Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Heliyon ; 10(3): e25419, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333824

ABSTRACT

Carbon capture, utilization and storage (CCUS) technologies are utmost need of the modern era. CCUS technologies adoption is compulsory to keep global warming below 1.5 °C. Mineral carbonation (MC) is considered one of the safest and most viable methods to sequester anthropogenic carbon dioxide (CO2). MC is an exothermic reaction and occur naturally in the subsurface because of fluid-rock interactions with serpentinite. In serpentine carbonation, CO2 reacts with magnesium to produce carbonates. This article covers CO2 mitigation technologies especially mineral carbonation, mineral carbonation by natural and industrial materials, mineral carbonation feedstock availability in Pakistan, detailed characterization of serpentine from Skardu serpentinite belt, geo sequestration, oceanic sequestration, CO2 to urea and CO2 to methanol and other chemicals. Advantages, disadvantages, and suitability of these technologies is discussed. These technologies are utmost necessary for Pakistan as recent climate change induced flooding devastated one third of Pakistan affecting millions of families. Hence, Pakistan must store CO2 through various CCUS technologies.

2.
PLoS One ; 18(12): e0290374, 2023.
Article in English | MEDLINE | ID: mdl-38051753

ABSTRACT

BACKGROUND: Toxoplasma gondii is a zoonotic and foodborne intracellular parasite capable of inducing congenital infections, stillbirths and abortions in humans and animals, globally. The consumption of undercooked or raw mutton is "one of the vital risks" for acquiring toxoplasmosis: an asymptomatic condition in healthy persons, while life-threatening in immunodeficient individuals like "HIV/AIDS" patients. OBJECTIVES: The current study has multiple objectives: to optimize a newly ELISA kit for Sheep, to find out the seroprevalence of ovine toxoplasmosis of two ecological zones of the Punjab, Pakistan through LAT and newly Optimized Sheep ELISA kit, to do the comparison of efficacies of various tests (LAT with newly Optimized ELISA kit and newly Optimized ELISA kit with commercial ELISA kit) and to determine the different meteorological parameters as the risk factors for T. gondii infection in sheep. METHODS: A cross-sectional study was conducted on 400 sheep sera, 200 were collected from sheep raised on open grazing system by local farmers in the adjoining areas of Civil Veterinary Dispensaries (CVDs) of range-ecological zone i.e. tehsil Kot Chutta (Dera Ghazi khan). Similarly, the remaining 200 were collected from agro-ecological zone i.e. tehsil Sharaqpur (Sheikhupura), to evaluate the comparative efficacy of LAT with optimized ELISA kit and newly optimized ELISA kit with commercial ELISA kit. FINDINGS: The newly ELISA kit optimized against a commercial ELISA kit was found to have 100% sensitivity, 97.6% specificity with 98% Positive Predictive Value, 100% Negative Predictive Value, Cut off value = 0.505, 28.28 LR+, 0.0104 LR-, and 2719.23 DOR. Seroprevalence of toxoplasmosis was detected significantly (P < 0.01; χ2) higher in Sharaqpur (44.5% by LAT; 35.5% by ELISA) as compared to that in Kot Chutta (39.5% by LAT; 31% by ELISA). The highest seroprevalence was seen in the sheep of the 1-2 years age group (P < 0.01; χ2), whereas the lowest in the oldest animals (≥ 4 years). Investigation of meteorological data of both the regions reveals that the zone with higher seroprevalence has relatively higher rainfall, higher humidity, lower environmental temperatures, and higher altitude as the critical factors, potentially behind the significant difference seen in seroprevalence level. The partial correlation of both tests (newly optimized ELISA kit and LAT) was 0.991 at maximum temperature in Sharaqpur while it was 0.981 in Kot Chutta. INTERPRETATION: A novel significant correlation was found between the meteorological parameters (relative humidity, minimum, maximum, and average temperatures) divided into yearly units of both the ecological zones, and year-wise seroprevalence (birth years of age-wise groups) of the corresponding regions. We hypothesize that such environmental conditions increase the risk of toxoplasmosis in grazing sheep, owing to a more favorable environment for coccidian oocyst survival. The ELISA kit optimized in this study will be helpful for the detection of seroprevalence of ovine toxoplasmosis in other ecological zones of Pakistan as well as of any other country in the world. More studies are recommended involving regions from other ecological zones of Pakistan to further explore the seroprevalence of ovine toxoplasmosis and to ratify the novel correlation of meteorological parameters with seroprevalence.


Subject(s)
Sheep Diseases , Toxoplasma , Toxoplasmosis, Animal , Pregnancy , Female , Humans , Animals , Sheep , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/epidemiology , Seroepidemiologic Studies , Cross-Sectional Studies , Antibodies, Protozoan , Risk Factors , Enzyme-Linked Immunosorbent Assay/veterinary , Sheep Diseases/diagnosis , Sheep Diseases/epidemiology , Sheep Diseases/parasitology
3.
Heliyon ; 9(11): e21796, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027886

ABSTRACT

Mineral technology has attracted significant attention in recent decades. Mineral carbonation technology is being used for permanent sequestration of CO2 (greenhouse gas). Temperature programmed desorption studies showed interaction of CO2 with Mg indicating possibility of using natural feedstocks for mineral carbonation. Soaking is effective to increase yields of heat-activated materials. This review covers the latest developments in mineral carbonation technology. In this review, development in carbonation of natural minerals, effect of soaking on raw and heat-activated dunite, increasing reactivity of minerals, thermal activation, carbonations of waste materials, increasing efficiency of carbonation process and pilot plants on mineral carbonation are discussed. Developments in carbonation processes (single-stage carbonation, two-stage carbonation, acid dissolution, ph swing process) and pre-process and concurrent grinding are elaborated. This review also highlights future research required in mineral carbonation technology.

4.
Animals (Basel) ; 13(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37893956

ABSTRACT

Ixodes ticks transmit Theileria and Anaplasma species to a wide range of animals. The spreading of ticks and tick-borne pathogens has been attributed to transhumant herds, and research on these uninvestigated issues has been neglected in many countries, including Pakistan. Recently, we used internal transcribed spacer (ITS) and 16S ribosomal DNA partial sequences to genetically characterize Ixodes kashmiricus ticks and their associated Rickettsia spp. However, the data on its cox1 sequence and associated Theileria spp. and Anaplasma spp. are missing. This study aimed to genetically characterize I. kashmiricus based on the cox1 sequence and their associated Theileria spp. and Anaplasma spp. The I. kashmiricus ticks were collected from small ruminants: sheep (Ovis aries) and goats (Capra hircus) of transhumant herds in district Shangla, Dir Upper and Chitral, Khyber Pakhtunkhwa (KP), Pakistan. Out of 129 examined hosts, 94 (72.87%) (56 sheep and 38 goats) were infested by 352 ticks, including adult females (175; 49.7%) followed by nymphs (115; 32.7%) and males (62; 17.6%). For molecular analyses, 121 ticks were subjected to DNA isolation and PCR for the amplification of the cox1 sequence for I. kashmiricus, 18S rDNA for Theileria spp. and 16S rDNA sequences for Anaplasma spp. The obtained cox1 sequence showed 89.29%, 88.78%, and 88.71% identity with Ixodes scapularis, Ixodes gibbosus, and Ixodes apronophorus, respectively. Phylogenetically, the present cox1 sequence clustered with the Ixodes ricinus complex. Additionally, the 18S rDNA sequence showed 98.11% maximum identity with Theileria cf. sinensis and 97.99% identity with Theileria sinensis. Phylogenetically, Theileria spp. clustered with the T. cf. sinensis and T. sinensis. In the case of Anaplasma spp., the 16S rDNA sequence showed 100% identity with Anaplasma capra and phylogenetically clustered with the A. capra. PCR-based DNA detection targeting the amplification of groEL and flaB sequences of Coxiella spp. and Borrelia spp., respectively, was unsuccessful. This is the first phylogenetic report based on cox1 and new locality records of I. kashmiricus, and the associated T. sinensis-like and A. capra. Significant tick surveillance studies are needed in order to determine the epidemiology of Ixodes ticks and their associated pathogens.

5.
Parasitol Res ; 122(9): 2135-2145, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37466666

ABSTRACT

Tropical theileriosis is a tick-borne disease caused by the protozoan Theileria annulata and transmitted by numerous species of Ixodid ticks of the genus Hyalomma. The main clinical signs are fever, lymphadenopathy, and anemia responsible for heavy economic losses, including mortality, morbidity, vaccination failure, and treatment cost. Development of poor cell-mediated immunity (CMI) has been observed in the case of many bovine pathogens (bacteria, viruses, and parasites). Quantification of CMI is a prerequisite for evaluating vaccine efficacy against theileriosis caused by T. annulata. The current study evaluated the CMI in calves administered with two types of T. annulata vaccine (live attenuated and killed). We prepared a live attenuated T. annulata vaccine by attenuation in a rabbit model and also prepared killed vaccine from non-attenuated T. annulata. For the evaluation of immune response in experimental groups including control, 20 calves were divided into four different groups (A, B, C, and D). They were either inoculated subcutaneously with live rabbit-propagated-Theileria-infected RBCs (5 × 106) (group A) or with killed T. annulata vaccine (2 × 109 schizonts) with Freund's adjuvant (group B), along with an infected group (group C) and a healthy control group (group D). The protection of vaccinated calves was estimated with challenge infection. Our results showed that with a single shot of live-attenuated and killed vaccine with a booster dose elicited cell-mediated immune responses in immunized calves. We observed a significant elevation in CD4 + and CD8 + T cells in immunized calves. A significant difference in the CD8 + T cell response between the post-challenge stage of killed and live vaccine (p < 0.0001) was observed, whereas no other difference was found at both pre- and post-immunization stages. A similar finding was recorded for the CD4 + T cells at a post-challenge stage, where a significant difference was seen between killed and live vaccine (p < 0.0001). Another significant difference was observed between the CD8 + T cells and CD4 + T cells at the post-challenge stage in the live vaccine group, where there was a significantly higher induction of CD4 + T cell response (p < 0.0001).


Subject(s)
Cattle Diseases , Ixodidae , Protozoan Vaccines , Theileria annulata , Theileriasis , Animals , Cattle , Rabbits , Theileriasis/prevention & control , Theileriasis/parasitology , Vaccines, Inactivated , Immunization/veterinary , Cattle Diseases/parasitology , Immunity, Cellular
6.
Acta Trop ; 243: 106940, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37160189

ABSTRACT

Bartonella can infect a variety of mammals including humans and has been detected in the Americas, Europe, Africa, and Asia. Roughly two-thirds of identified Bartonella species are found and maintained in rodent reservoirs, with some of these species linked to human infections. Rodents (N=236) were caught from the Sahiwal division of Punjab, Pakistan and tested for Bartonella using PCR targeting gltA and rpoB genes, followed by sequencing of rpoB-positive samples. Genetic relatedness to other published Bartonella spp. rpoB gene sequences were examined using BLAST and phylogenetic analysis. Overall, 7.62% (18/236) of rodents were positive for both gltA and rpoB fragments. Rattus rattus and R. norvegicus had 7.94% (12/151) and 7.05% (6/85) positivity rates for Bartonella DNA, respectively. Phylogenetic analysis revealed a close relatedness between Bartonella spp. from Pakistan to Bartonella spp. from China, Nepal, and Malaysia. This study is the first reported detection of Bartonella spp. in R. rattus and R. norvegicus from the Sahiwal area of Punjab, Pakistan.


Subject(s)
Bartonella Infections , Bartonella , Rats , Animals , Humans , Bartonella/genetics , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Pakistan/epidemiology , Phylogeny , Molecular Epidemiology , Mammals , Rodentia
7.
J Pak Med Assoc ; 73(5): 1061-1068, 2023 May.
Article in English | MEDLINE | ID: mdl-37218234

ABSTRACT

OBJECTIVE: To review the seroprevalence of toxoplasmosis in Pakistan. METHODS: The systematic review comprised search on Science Direct, Google Scholar, PubMed and Scopus databases for studies related to the seroprevalence of toxoplasmosis in Pakistan published between 2006 and 2020 which used serological diagnostic tests to detect Toxoplasma gondii. Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were used throughout the review and statistical analysis was done using forest plot and random effect model. RESULTS: Of the 7093 human studies initially found, 20(0.28%) were reviewed. Of the 16,432 animal studies, 16(0.09%) were selected for detailed review. The pooled seroprevalence of toxoplasmosis in humans, calculated in this review was found as (76%) (95% confidence interval: 69-83%). Seroprevalence of human toxoplasmosis was higher in Khyber Pakhtunkhwa (31.7%) than Punjab (20.4%). Pooled seroprevalence in animals calculated in this review was found as (69%) (95% confidence interval: 64-74%). Seroprevalence in animals was higher in Khyber Pakhtunkhwa (44.7%) than Punjab (29.4%). CONCLUSIONS: The seroprevalence of toxoplasmosis in both humans and animals should be studied it other parts of Pakistan as well.


Subject(s)
Metadata , Toxoplasmosis , Animals , Humans , Pakistan/epidemiology , Seroepidemiologic Studies , Antibodies, Protozoan , Toxoplasmosis/epidemiology , Risk Factors
8.
Animals (Basel) ; 13(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36899724

ABSTRACT

Cystic echinococcosis (hydatidosis) is a world-wide zoonotic disease of mainly humans, livestock and dogs, caused by Echinococcus granulosus. The disease can negatively impact food production and animal welfare and causes socio-economic hardship. Here, we aimed to identify the local bovine hydatid cyst fluid (BHCF) antigen for developing a sero-diagnostic assay to be used for the pre-slaughter screening of food animals. In total, 264 bovines approved for slaughter in Pakistan were subjected to serum collection and post-mortem screening for hydatid cysts. These cysts were assessed microscopically to assess fertility and viability, and by PCR for molecular confirmation of species. A BHCF antigen was identified from positive sera via SDS-PAGE, confirmed by Western blot, and quantified via a bicinchoninic acid (BCA) assay. The quantified crude BHCF antigen (iEg67 kDa) was then used in ELISA screening to test all sera collected from known positive and negative animals based on hydatid cyst presence/absence. Of the 264 bovines examined, 38 (14.4%) showed hydatid cysts during post-mortem examination. All of these individuals, plus an additional 14 (total: 52; 19.6%) tested positive based on less time-consuming ELISA examination. Based on ELISA, occurrence in females (18.8%) was significantly higher than in males (9.2%) and was higher in cattle (19.5%) compared to buffalo (9.5%). The infection rate increased with age in both host species: cumulatively, 3.6% in animals aged 2-3 years, 14.6% in 4-5-year-olds and 25.6% in 6-7-year-olds. The occurrence of cysts in cattle was significantly higher in the lungs (14.1%) compared to their livers (5.5%), whereas the opposite was true in buffalo (6.6% livers, 2.9% lungs). For both host species, most cysts in the lungs were fertile (65%), while the majority in the liver were sterile (71.4%). We conclude that the identified iEg67 kDa antigen is a strong candidate for the development of a sero-diagnostic screening assay for the pre-slaughter diagnosis of hydatidosis.

9.
Parasitol Res ; 122(1): 299-306, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36401141

ABSTRACT

Toxoplasmosis is a zoonotic disease in humans and animals caused by the protozoan parasite Toxoplasma gondii. Rodents not only act as intermediate hosts for T. gondii but are also a significant source of T. gondii infection for other hosts. There is limited information about the prevalence of this protozoan within rodents in Pakistan. The current study was conducted to determine the prevalence of T. gondii in commensal rodents as well as associated risk factors. A total of 236 rats including Rattus rattus and Rattus norvegicus were captured from three districts of the Sahiwal division in Punjab province, Pakistan. Brain samples were collected from each specimen. Data was gathered about rodent species, gender, age, location, districts, seasonality, and habitat type. PCR assays were used to screen for T. gondii from the brain samples. A Chi-square analysis was used to investigate the association between positive samples and risk factors. A total of 236 rodent spleen samples were examined for detection of the B1 and SAG3 genes of T. gondii DNA by conventional PCR, and 14 (5.9%) were positive. T. gondii prevalence was higher in R. norvegicus (8.2%) compared to R. rattus (4.6%). All risk factors were statistically non-significant. This study provides evidence of T. gondii in rodents in the Sahiwal division and indicates that other animals and humans are at risk of infection.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Rats , Animals , Humans , Rodentia , Toxoplasma/genetics , Pakistan/epidemiology , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Zoonoses
10.
Microsc Res Tech ; 86(3): 320-330, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36582143

ABSTRACT

The antibacterial activity of synthetic antimicrobial agents is well known, but most of them have several side effects and are effective against selective microbes. Recently, major concern for the microbiologists is to investigate for some stable, non-toxic, cheap, and eco-friendly antimicrobial agents with a wide range of bactericidal potential. A cost-effective and environmentally friendly alternate has been proposed in the form of green synthesized nanoparticles. The Present study was designed to fabricate sericin-coated silver nanoparticles (S-AgNPs) using sericin as stabilizer and reductant of silver ions and their antibacterial potential was evaluated at various concentrations and temperatures (8, 40, and 50°C). Antimicrobial activities were assessed by the agar well diffusion method. Antibacterial activity of S-AgNPs was measured at different concentrations (1-6 mg/ml) whereas; antifungal activity was tested at 5-20 mg/ml of S-AgNPs. Nanoparticles were characterized by UV-visible spectrophotometer, Fourier transform infrared spectroscopy, and scanning electron microscopy. These nanoparticles significantly subdued the growth of Clostridium difficile (18.7 ± 0.9 mm), Proteus mirabilis (12.3 ± 0.3 mm) and Bacillus licheniformis (10.7 ± 0.9 mm) and Aspergillus flavus (18.7 ± 2.0 mm), Mucor mycetes (13 .0 ± 1.5 mm), Candida albicans (15.3 ± 0.3 mm) and Aspergillus niger (10.0 ± 0.6 mm). S-AgNPs were stable at all temperatures and the maximum growth inhibition was found at 8°C for all pathogenic strains. We concluded that the S-AgNPs could be a potential candidate to inhibit the growth of bacterial and fungal pathogens at a wide range of environmental conditions like temperature. In various biomedical applications including antimicrobial and wound dressings, S-AgNPs can be used in the future to treat various bacterial and fungal infections.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Sericins , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Sericins/chemistry , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus
11.
Int J Occup Saf Ergon ; 29(4): 1440-1450, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36221985

ABSTRACT

Objectives. This article describes the reduction of unsafe behaviors observed at a fertilizer complex by implementation of a behavior-based safety (BBS) program via a behavior observation form developed by a multidisciplinary team. Methods. Six observation categories, i.e., position of people, reaction of people, personal protective equipment (PPE), tools used, operating procedures and housekeeping, are used to monitor safe and unsafe behaviors for a period of 18 months. Results. Safe behaviors increased from 57 to 70% and unsafe behaviors reduced from 40 to 26%. Behaviors of employees working in various sections of fertilizer complex such as ammonia, urea, utility, bagging/shipping and workshop were also observed. Non-compliance with PPE, housekeeping and standard operating procedures was also monitored in individual sections. Non-operational areas including the administration block, housing colony, maintenance workshop, warehouse, fire station and electrical substation were also observed. Among these, the maximum unsafe behaviors are for the housing colony and minimum for the electrical substation. Conclusion. It has been concluded that working on the housing colony, administration block and fire station areas will address 74% unsafe behaviors of non-operational areas. For practical applications, worldwide industries can implement this BBS program to enhance BBS, thus reducing unsafe behaviors and increasing employee morale.


Subject(s)
Construction Industry , Occupational Health , Humans , Fertilizers , Safety Management/methods
12.
Front Vet Sci ; 9: 1047497, 2022.
Article in English | MEDLINE | ID: mdl-36467634

ABSTRACT

Intestinal parasitic infection is one of the major challenges in obtaining optimal production and maintaining the health and welfare of all animals including cattle and buffaloes. Anti-parasitic treatments appear to be a reliable countermeasure. However, the effectiveness and selection of suitable anthelmintics require situational assessments in a given locality. In the current study, the efficacy and impact of benzimidazole (albendazole) were assessed in a total of 400 (100 each) on the performance of buffaloes, buffalo-heifer, cattle, and cattle-heifers at two commercial dairy farms in the Province of Punjab, Pakistan. Additionally, the cost-benefit ratio was calculated by assessing the inputs (medication, feed, and labor cost) and outputs (milk and weight gain). The qualitative and quantitative examination of helminth eggs in each type of animal indicated a prevalence of 73.3, 78.3, 76.6, and 85.0% in cattle, cattle-heifers, buffaloes, and buffaloes-heifers, respectively. Specifically, a highest rate (10.0-13.3%) of Haemonchus sp. infection was only observed in cattle and heifers, while Fasciola sp. infections (10.0-11.6%) were the most often found species in buffaloes and heifers. The highest anthelmintic impacts (egg per gram of feces, p < 0.001) were observed on day 14 post-medication. Until 60 days of post-anthelmintic treatment, an average increase of 0.8 and 0.7 L in milk production per day in cattle and buffaloes, respectively while a total of 11.45 and 9.45 kg body weight were noticed in cattle-heifer and buffaloes-heifer, respectively. Cumulative cost-benefit analysis indicated a positive correlation between treated and non-treated animals. These findings reiterate the importance of anthelmintic drugs in reducing the impacts of parasites on the productivity, health, and well-being of an animal under high infection challenges.

13.
Trop Anim Health Prod ; 54(6): 337, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36208348

ABSTRACT

Babesiosis is a tick-borne disease found globally but most prominent in tropical and subtropical regions. It is responsible for huge mortality and morbidity, especially in developing countries like Pakistan. The current study was designed to determine the molecular epidemiology and characterization of Babesia bovis (B. bovis) infection in cattle populations of districts Mardan, Kohat and Swat of Khyber Pakhtunkhwa (KP) province of Pakistan. A total of 434 tick-infested animals were sampled. Blood samples were collected, processed and then examined initially by microscopy for the presence of Babesia and were later confirmed through PCR by targeting cytochrome b gene, and the PCR products were sequenced. Phylogenetic analysis of sequenced isolates of the current study showed close sequence similarity with the reported strain of China. A non-significant association (p > 0.05) was observed between the prevalence of infections and risk factors. The overall prevalence of infection in all three districts was 10.11%. In district Swat (12.61%), the prevalence was recorded as the highest for B. bovis infection followed by district Mardan (10.60%) and district Kohat (06.90%). The Friesian breed of cattle, females and adult animals were highly susceptible to B. bovis infection. The prevalence of infection was recorded highest during the summer season and lowest during the winter season. This study concludes that B. bovis infection is prevalent in three studied districts of KP province and the sequenced isolates of the current study showed close sequence similarity with the reported strain of China.


Subject(s)
Babesia bovis , Babesiosis , Cattle Diseases , Ticks , Animals , Babesia bovis/genetics , Babesiosis/epidemiology , Cattle , Cattle Diseases/epidemiology , Cytochromes b/genetics , Female , Molecular Epidemiology , Pakistan/epidemiology , Phylogeny
14.
Animals (Basel) ; 12(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36078007

ABSTRACT

Bovine babesiosis (BB) is a vector-borne disease (VBD) that affects cattle in tropical and subtropical areas, caused by the haemoprotozoa Babesia bovis and Babesia bigemina. It is transmitted by tick bites belonging to the genus Rhipicephalus and is clinically characterized by high fever, depression, anorexia, decreased milk and meat production, haemoglobinemia, haemoglobinuria, jaundice, and pregnancy loss. In this study, the propagation of B. bigemina was evaluated by intraperitoneally inoculating 3 × 106 red blood cells infected with B. bigemina into rabbits. The study showed that variations in rabbit body temperatures are related to induced bovine babesiosis. A significant increase in temperature (39.20 ± 0.23 °C) was observed from day 4 onwards, with the maximum temperature (40.80 ± 1.01 °C) on day 9 post-inoculation. This study included susceptible cross-bred calves for in vivo attenuation, and they were compared with an infected group. The calves in the infected group showed a significant increase in temperature (38.79 ± 0.03 °C) from day 3 onwards and a maximum temperature (41.3 ± 0.17 °C) on day 11. Inoculated calves showed a gradual rise in temperature post-inoculation, but the difference was not significant. Inoculated calves did not show parasitaemia, whereas 32% of infected calves displayed parasitaemia. As compared to inoculated calves post-inoculation, packed cell volume (PCV) decreased (16.36 ± 1.30) for infected calves. However, there were statistically significant differences (p ≤ 0.05) in temperatures, parasitaemia, and PCV in both inoculated and infected calves. The current study aimed to attenuate B. bigemina in rabbit models and evaluate the pathogenic potential of this organism in naive calves. In conclusion, B. bigemina proliferation was attenuated in rabbits. The rabbit model can be used to study B. bigemina in vivo in order to reduce its pathogenicity.

15.
Environ Sci Pollut Res Int ; 29(50): 75161-75183, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36129648

ABSTRACT

Peridotite and serpentinites can be used to sequester CO2 emissions through mineral carbonation. Olivine dissolution rate is directly proportional with temperature, presence of CO2, surface area of mineral particles and presence of ligands and is inversely proportional to pH. Olivine dissolution is better under air flow and increases seven times when rock-inhibiting fungus (Knufia petricola) is used. Olivine dissolution retards as silica layers form during reaction. Sonication, acoustic and concurrent grinding using various grinding medias have been used to artificially break these silica layers and achieve high magnesium extraction. Wet grinding using 50 wt.% ethanol enhanced CO2 uptake of dunite 6.9 times and CO2 uptake of harzburgite by 4.5 times. The best economical process is single-stage concurrent grinding at 130 bar, 185 °C, 15 wt.% solids and 50 wt.% grinding media (zirconia) using 0.64 M NaHCO3. Ratio of grinding media to feed should not be less than 3:1. Yield increases with temperature, pressure, time of reaction, pH and rpm and using additives and grinding media and reducing particle size. This review aims to investigate the progress from 1970s to 2021 on aqueous mineral carbonation of olivine and its naturally available rocks (harzburgite and dunite). This paper comprehensively reviews all aspects of olivine carbonation including olivine dissolution kinetics, effects of grinding and concurrent grinding, thermal activation of olivine feedstock (dunites and harzburgites) as well as chemistry of olivine mineral carbonation. The effects of different reaction parameters on the carbonation yield, role of mineral carbonation accelerators and costs of mineral carbonation process are discussed.


Subject(s)
Carbon Dioxide , Magnesium , Carbon , Carbonates , Ethanol , Iron Compounds , Magnesium Compounds , Minerals , Silicates , Silicon Dioxide , Water
16.
Animals (Basel) ; 12(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36009657

ABSTRACT

Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis in warm-blooded vertebrates, globally. The main aims of this study were to assess the seropositivity to toxoplasmosis of an exotic breed of cattle (n = 400) from different farms using the Latex Agglutination Test and validate Cattle Toxo IgG ELISA kit. Of a total of 400 cattle sera that were evaluated by LAT, 143 (35.75%) were found positive. Based on these data, 90 samples (n = 60 seronegative by LAT; n = 30 seropositive by LAT) were elected for screening through a commercially available ELISA kit. The same 90 samples were screened through a Cattle Toxo IgG ELISA kit for validation purposes. Of 90 samples, 40 were seropositive in the Cattle Toxo IgG ELISA kit (100% sensitivity), and 38 were seropositive in a commercially available ELISA kit. All 50 samples in the Cattle Toxo IgG ELISA kit (96.15% specificity) were also seronegative in the commercially available ELISA kit. Hence, the sensitivity and specificity of the Cattle Toxo IgG ELISA kit came out to be 100% and 96.15%, and in LAT, it was found as 26.31% and 61.53%, respectively. Therefore, the Cattle Toxo IgG ELISA kit is a highly reliable serodiagnostic tool to diagnose bovine toxoplasmosis.

17.
Pathogens ; 11(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35745517

ABSTRACT

The aim of this study was to investigate the seroprevalence of Q fever in sheep and goats in Kasur, Okara, and Pakpattan in the Punjab of Pakistan. Q fever is a widely reported zoonotic disease caused by Coxiella (C.) burnetii. The main reservoirs are small ruminants that excrete the bacteria in birth by-products in high numbers. Thus, the bacteria can also be detected in the air and the dust of livestock farms. The infection is often asymptomatic in ruminants, but it can lead to reproductive disorders. This cross-sectional study found that a significant number (n = 43; 11.3%) of 300 randomly selected small ruminants of nine tehsils were seropositive using a commercially available ELISA. Seroprevalence was significantly higher in goats (17.1%) than in sheep (4.9%). Binary logistic regression analysis proved that species, age, and breed have a significant effect on the prevalence of Q fever. Tick infestation, contact with animal fomites, contact with other animals, production system, and health status of an animal had a significant impact on the prevalence of Q fever. These findings on Q fever in animals can be used to improve the visibility of this zoonotic disease. These findings will help local health authorities to focus on the origin of the problem and facilitate applying preventive measures to the affected livestock farms.

18.
Front Microbiol ; 13: 846884, 2022.
Article in English | MEDLINE | ID: mdl-35602013

ABSTRACT

Ticks (Acari; Ixodidae) are the second most important vector for transmission of pathogens to humans, livestock, and wildlife. Ticks as vectors for viruses have been reported many times over the last 100 years. Tick-borne viruses (TBVs) belong to two orders (Bunyavirales and Mononegavirales) containing nine families (Bunyaviridae, Rhabdoviridae, Asfarviridae, Orthomyxovirida, Reoviridae, Flaviviridae, Phenuviridae, Nyamiviridae, and Nairoviridae). Among these TBVs, some are very pathogenic, causing huge mortality, and hence, deserve to be covered under the umbrella of one health. About 38 viral species are being transmitted by <10% of the tick species of the families Ixodidae and Argasidae. All TBVs are RNA viruses except for the African swine fever virus from the family Asfarviridae. Tick-borne viral diseases have also been classified as an emerging threat to public health and animals, especially in resource-poor communities of the developing world. Tick-host interaction plays an important role in the successful transmission of pathogens. The ticks' salivary glands are the main cellular machinery involved in the uptake, settlement, and multiplication of viruses, which are required for successful transmission into the final host. Furthermore, tick saliva also participates as an augmenting tool during the physiological process of transmission. Tick saliva is an important key element in the successful transmission of pathogens and contains different antimicrobial proteins, e.g., defensin, serine, proteases, and cement protein, which are key players in tick-virus interaction. While tick-virus interaction is a crucial factor in the propagation of tick-borne viral diseases, other factors (physiological, immunological, and gut flora) are also involved. Some immunological factors, e.g., toll-like receptors, scavenger receptors, Janus-kinase (JAK-STAT) pathway, and immunodeficiency (IMD) pathway are involved in tick-virus interaction by helping in virus assembly and acting to increase transmission. Ticks also harbor some endogenous viruses as internal microbial faunas, which also play a significant role in tick-virus interaction. Studies focusing on tick saliva and its role in pathogen transmission, tick feeding, and control of ticks using functional genomics all point toward solutions to this emerging threat. Information regarding tick-virus interaction is somewhat lacking; however, this information is necessary for a complete understanding of transmission TBVs and their persistence in nature. This review encompasses insight into the ecology and vectorial capacity of tick vectors, as well as our current understanding of the predisposing, enabling, precipitating, and reinforcing factors that influence TBV epidemics. The review explores the cellular, biochemical, and immunological tools which ensure and augment successful evading of the ticks' defense systems and transmission of the viruses to the final hosts at the virus-vector interface. The role of functional genomics, proteomics, and metabolomics in profiling tick-virus interaction is also discussed. This review is an initial attempt to comprehensively elaborate on the epidemiological determinants of TBVs with a focus on intra-vector physiological processes involved in the successful execution of the docking, uptake, settlement, replication, and transmission processes of arboviruses. This adds valuable data to the existing bank of knowledge for global stakeholders, policymakers, and the scientific community working to devise appropriate strategies to control ticks and TBVs.

19.
Oxid Med Cell Longev ; 2022: 9961513, 2022.
Article in English | MEDLINE | ID: mdl-35368873

ABSTRACT

Recently, there have been numerous reports showing that phthalates have negative human health impacts and may cause several diseases such as asthma, breast cancer, obesity, type II diabetes, and male infertility. Animals are also exposed to phthalates through the environment and can cause adverse health effects on them. Several studies have been found on the cytogenetic effects of dibutyl phthalate (DBP) on different organisms but no documented evidence has been found on the cytotoxic and genotoxic effects of dibutyl phthalate (DBP) on bovine cultured lymphocytes. MTT assay was performed on different series of DBP concentrations (10 µM, 20 µM, 30 µM, 50 µM, 70 µM, 100 µM). A concentration-dependent decrease in cell viability was observed by the DBP. The LD50, LD50/2, and 2∗LD50 were found to be 50 µM, 30 µM, and 80 µM on bovine lymphocytes, respectively. Then, these concentrations of DBP were utilized to perform comet, micronucleus assays, and oxidative stress. A concentration-dependent increase in DNA damage, oxidative stress, and micronuclei formation was observed in lymphocytes by the DBP as compared to the control group. Highest genotoxic effects were observed at a concentration of 2∗LD50. Similarly, total oxidative stress was found higher, and antioxidative stress was lower in concentration-dependent manner by the DBP. The current study revealed a significant cytotoxic, genotoxic, and oxidative stress of DBP on cultured bovine lymphocytes.


Subject(s)
Diabetes Mellitus, Type 2 , Dibutyl Phthalate , Animals , Cattle , DNA Damage , Dibutyl Phthalate/toxicity , Lymphocytes , Male , Oxidative Stress
20.
Animals (Basel) ; 12(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35405803

ABSTRACT

Tropical theileriosis caused by the protozoan; Theileria annulata is a tick-borne disease (TBD) transmitted by ticks of genus Hyalomma; is clinically characterized by fever, anemia, and lymphadenopathy; and is responsible for heavy economic losses in terms of high morbidity and mortality rates with reduced production. Infected red blood cells of T. annulata were inoculated into rabbits intraperitoneally, and propagation of T. annulata has been investigated. The current study has shown an association between induced tropical theileriosis and variation of body temperature in rabbits. A significant rise in temperature (39.92 ± 0.33 °C) was seen on day 8 onwards, with the maximum temperature (40.27 ± 0.44 °C) on day 14 post-inoculation. In the current study, in vivo trials in susceptible cross-bred calves to investigate the attenuation and comparison with the infected group were also conducted. All the infected calves (n = 5) showed a significant rise in temperature (40.26 ± 0.05 °C) on day 10 onwards, with the maximum temperature (40.88 ± 0.05 °C) on day 16. The temperature of inoculated calves increased gradually post-inoculation, but the difference was not significant. A maximum parasitemia of 20% was observed in infected calves, but no piroplasm parasitemia was observed in inoculated calves. The prescapular lymph nodes of infected calves were enlarged, while the lymph nodes of inoculated calves remained normal throughout the trial. Analysis of clinical and parasitological responses of infected and inoculated calves showed a significant difference (p ≤ 0.05) in terms of temperature, parasitemia, and lymph node scoring between two groups. The current study was primarily aimed to attenuate T. annulata in rabbit and to check its virulence in susceptible calves. It is concluded that propagation of Theileria annulata in rabbits made it attenuated. Rabbit can be used as an in vivo model to weaken the virulence of T. annulata.

SELECTION OF CITATIONS
SEARCH DETAIL
...